a2 United States Patent

Haviv et al.

US009189204B2

US 9,189,204 B2
*Nov. 17,2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

STATIC ANALYSIS OF COMPUTER
SOFTWARE APPLICATIONS HAVING A
MODEL-VIEW-CONTROLLER
ARCHITECTURE

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Yinnon A. Haviv, Beerotaim (IL); Omer
Tripp, Bronx, NY (US); Omri

Weisman, Tel Aviv (IL)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-

claimer.

Appl. No.: 14/226,736

Filed: Mar. 26,2014

Prior Publication Data

US 2014/0215431 Al Jul. 31, 2014

Related U.S. Application Data

Continuation of application No. 13/016,364, filed on
Jan. 28, 2011, now Pat. No. 8,726,245.

Int. Cl1.
GO6F 9/44
U.S. CL
CPC ... GOG6F 8/20 (2013.01); GOGF 8/75 (2013.01)

(2006.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,950,850 Bl 9/2005 Leffetal.
7,225,424 B2 5/2007 Cherdron et al.
8,190,807 B2 5/2012 Reid et al.
8,726,245 B2* 52014 Havivetal. ... 717/131
2002/0109734 Al 8/2002 Umezu et al.
2006/0059127 Al 3/2006 Berry et al.
2007/0061176 Al 3/2007 Gress et al.
2009/0158243 Al 6/2009 Bolarinwa
OTHER PUBLICATIONS

Richard Mischook, “Building Dynamic Web Applications”. [online],
[Retrieved on Mar. 25, 2010], Retrieved from the Internet at URL:
http://www killersites.com/articles/MVC htm>, 4pp.

(Continued)

Primary Examiner — Chuck Kendall
(74) Attorney, Agent, or Firm — North Shore Patents, P.C.;
Michele Liu Baillie; Lesley Leonessa

(57) ABSTRACT

Preparing a computer software application for static analysis
by identitying a control flow within a model portion of a
computer software application having a model-view-control-
ler architecture, where the control flow passes a value to a
controller portion of the computer software application, ana-
lyzing a declarative specification of the controller portion of
the computer software application to identify a view to which
the controller portion passes control based on the value, and
synthesizing a method within the computer software applica-
tion, where the method calls the view.

20 Claims, 8 Drawing Sheets

| START I

400
~_" 1}

ANALYZE CONTROLLER TO IDENTIFY
CONTROL FLOWS TO MODEL

A 4

402
~_" }

ANALYZE MODEL TO IDENTIFY ENTRY
POINTS CORRESPONDING TO THE
CONTROL FLOW

A 4

404
\/\\

SYNTHESIZE A ROOT METHOD WITHIN
THE MODEL THAT CALLS
THE ENTRY POINTS

Y

A
| FINISH I

US 9,189,204 B2
Page 2

(56) References Cited “Model-View-Controller Pattern”. [online], [Retrieved on Jan. 17,
2011], Retrieved from the Internet at <URS: http://www.enode.com/

OTHER PUBLICATIONS x/markup/tutorial/mve. html>, 2pp.

J. Wojciechowski et al., “MVC Model, Struts Framework and File
Upload Issues in Web applications Based on J2EE Platform”,
TCSET 2004, Feb. 24-28, 2004, Lviv-Slavsko; Ukraine. URL:
ieeexplore.ieee.org/iel 5/9428/29914/01365980 .pdf. * cited by examiner

U.S. Patent Nov. 17, 2015 Sheet 1 of 8 US 9,189,204 B2
MVC APPLICATION
INSTRUCTIONS
102— 104 —
MODEL CONTROLLER
INSPECTOR INSPECTOR
METHOD
SYNTHESIZER
108
M\ v
STATIC
ANALYZER
— v
——

Fig. 1

U.S. Patent Nov. 17, 2015 Sheet 2 of 8 US 9,189,204 B2

| START I

N

~_ 1 |IDENTIFY CONTROL FLOWS WITHIN
MODEL THAT PASS VALUES TO
CONTROLLER

200

\ 4

~_ 1 ANALYZE CONTROLLER TO IDENTIFY
VIEWS TO WHICH CONTROLLER PASSES
CONTROL BASED ON THE PASSED
VALUES

202

N

_ 1 SYNTHESIZE A METHOD WITHIN THE
MODEL THAT CALLS THE
IDENTIFIED VIEWS

A 4
FINISH I

Fig. 2

204

U.S. Patent Nov. 17, 2015 Sheet 3 of 8 US 9,189,204 B2

public ActionForward perform(ActionMapping mapping,
ActionForm form,
HttpServletRequest request,
HttpServletResponse response)
throws IOException,
ServletException {
// Extract attributes and parameters we will need

JoinForm joinForm = (JoinForm) form;
String email = joinForm.getEmail () ;
ActionErrors errors = new ActionErrors();

String forwardID;
// store input....
try A
business.db.MailinglList.AddEmail (email) ;
} catch (Exception e) {
// log, print stack
// display error back to user
errors.add("email", new
ActionError ("error.mailing.db.add"));
}
// If any messages 1s required, save the specified error
messages keys
// into the HTTP request for use by the <struts:errors>

(€8]
o
[

tag.
if (lerrors.empty()) {
saveErrors (request, errors);
// return to the original form

forwardID = "failure";
return (mapping.findForward (forwardID)); // (*)
} else {

// Forward control to the specified 'success' URI that
is in the Action.xml

forwardID = "success";

return (mapping.findForward (forwardID)); // (**)

Fig. 3A

U.S. Patent Nov. 17, 2015 Sheet 4 of 8 US 9,189,204 B2

<action path="/join"
name="joinForm"” 302
type="web.mailinglist.JoinAction" ==
scope="request”
input="/JoinMVC. jsp"
validate="true">
<forward name="failure" path="/joinMVC.jsp"/>
<forward name="success" path="/JoinSuccessful.jsp"/>
</action>
if (forwarded.equals ("success") {
request.redirectTo ("JoinMVC.jsp");
} else { 304

request.redirectTo ("JoinSuccessful.jsp");

Fig. 3B

U.S. Patent Nov. 17, 2015 Sheet 5 of 8 US 9,189,204 B2

| START I

N

~_ 1 ANALYZE CONTROLLER TO IDENTIFY
CONTROL FLOWS TO MODEL

400

v

~_ 1 ANALYZE MODEL TO IDENTIFY ENTRY
POINTS CORRESPONDING TO THE
CONTROL FLOW

402

A 4

~_)} SYNTHESIZE A ROOT METHOD WITHIN
THE MODEL THAT CALLS
THE ENTRY POINTS

A 4
| FINISH I

Fig. 4

404

U.S. Patent Nov. 17, 2015 Sheet 6 of 8 US 9,189,204 B2

HelloWorld. java
package org.apache.struts.helloworld.action;
import org.apache.struts.helloworld.model.MessageStore;
import com.opensymphony.xwork2.,ActionSupport;
public class HelloWorldAction extends ActionSupport {
private static final long serialVersionUID = 1L;
private MessageStore messageStore;
public String execute () throws Exception {
messageStore = new MessageStore() ;
return SUCCESS;

a
[
[}

}

public MessageStore getMessageStore () |
return messageStore;

}

public void setMessageStore (MessageStore messageStore) {
this.messageStore = messageStore;

1

<?xml version="1.0" encoding="UTF-8" 7>

<!DOCTYPE struts PUBLIC

"-//Apache Software Foundation//DTD Struts Configuration
2.0//EN"
"http://struts.apache.org/dtds/struts-2.0.dtd">
<struts>

<constant name="struts.enable.DynamicMethodInvocation"
value="false"™ />

<constant name="struts.devMode™ value="true" />
<package name="roseindia" namespace="/roseindia"
extends="struts-default"™>

<action name="HelloWorld"
class="net.roseindia.Struts2HelloWorld">
<result>/pages/HelloWorld.jsp</result>

</action>

<!-- Add actions here --> 502
</package>

<!-- Add packages here -->

</struts>

Fig. 5A

U.S. Patent Nov. 17, 2015 Sheet 7 of 8 US 9,189,204 B2

void SyntheticRoot () {

ven m
new HelloWorld () .execute() ;

/* For full support, instrument the execute method to invoke
the HelloWorld.jsp view directly. */

}

Fig. 5B

US 9,189,204 B2

Sheet 8 of 8

Nov. 17, 2015

U.S. Patent

9 b4
=
819
/) S33IA3A O/I /J HOSS3O0Hd
9l9 Zl9
J J
719 019

009

US 9,189,204 B2

1
STATIC ANALYSIS OF COMPUTER
SOFTWARE APPLICATIONS HAVING A
MODEL-VIEW-CONTROLLER
ARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims is a continuation of co-
pending U.S. patent application Ser. No. 13/016,364, filed on
Jan. 28, 2011.

FIELD OF THE INVENTION

The invention relates generally to static analysis of com-
puter software applications.

BACKGROUND OF THE INVENTION

The Model-View-Controller (MVC) design architecture is
a computer software application design architecture in which
those elements of a computer software application that
present data to an application user or receive input from the
user (i.e., the “user interface” or “presentation layer”),
referred to as the application “view”, are separated from those
elements of the application that access stored data and pro-
cess and transform data (i.e., the “business logic layer” or
“domain layer”), referred to as the application “model”. In the
MVC architecture, a “controller” determines when control of
the application during its execution is passed to a view ele-
ment or a model element.

Static analysis is often performed on computer software
application source code to identify issues such as logic errors
and security vulnerabilities. However, traditional static
analysis techniques do not provide sufficiently precise results
for MVC-based applications where the controller logic is
external to the application source code, as the controller logic
is either approximated in an overly-conservative manner,
thereby creating invalid control-flow paths between the
model and the view layers, or an under-approximation is
used, in which case certain valid flows are simply ignored.

SUMMARY OF THE INVENTION

Method, system and computer program product embodi-
ments of the invention are provided for preparing a computer
software application for static analysis, including identifying
a control flow within a model portion of a computer software
application having a model-view-controller architecture,
where the control flow passes a value to a controller portion of
the computer software application, analyzing a declarative
specification of the controller portion of the computer soft-
ware application to identify a view to which the controller
portion passes control based on the value, and synthesizing a
method within the computer software application, where the
method calls the view.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be understood and appreciated more
fully from the following detailed description taken in con-
junction with the appended drawings in which:

FIG.1isasimplified conceptual illustration of a system for
static analysis of computer software applications, constructed
and operative in accordance with an embodiment of the
invention;

15

20

40

45

55

60

2

FIG. 2 is a simplified flowchart illustration of an exemplary
method of operation of the system of FIG. 1, operative in
accordance with an embodiment of the invention;

FIG. 3 (consists of FIGS. 3A and 3B) is a simplified
example of model and controller portions of a computer soft-
ware application useful in understanding the method of FIG.
2;

FIG. 4 is a simplified flowchart illustration of an exemplary
method of operation of the system of FIG. 1, operative in
accordance with an alternative embodiment of the invention;

FIG. 5 (consists of FIGS. 5A and 5B) is a simplified
example of model and controller portions of a computer soft-
ware application useful in understanding the method of FIG.
4; and

FIG. 6 is a simplified block diagram illustration of an
exemplary hardware implementation of a computing system,
constructed and operative in accordance with an embodiment
of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The invention is now described within the context of one or
more embodiments, although the description is intended to be
illustrative of the invention as a whole, and is not to be
construed as limiting the invention to the embodiments
shown. It is appreciated that various modifications may occur
to those skilled in the art that, while not specifically shown
herein, are nevertheless within the true spirit and scope of the
invention.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical data storage device, a mag-
netic data storage device, or any suitable combination of the
foregoing. In the context of this document, a computer read-
able storage medium may be any tangible medium that can
contain, or store a program for use by or in connection with an
instruction execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-

US 9,189,204 B2

3

puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Reference is now made to FIG. 1, which is a simplified
conceptual illustration of a system for static analysis of com-
puter software applications, constructed and operative in
accordance with an embodiment of the invention. In the sys-
tem of FIG. 1, a static analysis preprocessor 100 is shown that
is configured to process the instructions, such as may be in the
form of source code or object code, of a computer software
application having an MVC architecture, prior to performing
conventional static analysis of the computer software appli-

10

15

20

25

30

35

40

45

50

55

60

65

4

cation. Preprocessor 100 preferably includes a model inspec-
tor 102 that is configured to identify one or more control flows
within a model portion of the computer software application,
where each control flow passes one or more values to a con-
troller portion of the computer software application. Prepro-
cessor 100 also preferably includes a controller inspector 104
that is configured to analyze a declarative specification of the
controller portion of the computer software application to
identify one or more views to which the controller portion
passes control based on the value(s) passed by any, and pref-
erably every, one of the identified control flows. Preprocessor
100 also preferably includes a method synthesizer 106 that is
configured to synthesize a method, such as within the model
portion of the computer software application, where the syn-
thesized method directly calls any, and preferably every, one
of'the identified views, and/or indirectly calls the views pref-
erably other than via the controller portion of the computer
software application. The synthetic method is preferably
included with the computer software application instructions
when static analysis is performed by a static analyzer 108 in
accordance with conventional techniques.

In an alternative embodiment, controller inspector 104 is
configured to analyze a declarative specification of the con-
troller portion of the computer software application to iden-
tify one or more control flows from the controller portion of
the computer software application to the model portion of the
computer software application, model inspector 102 is con-
figured to identify, for any, and preferably every, identified
control flow, an entry point corresponding to the control flow
within the model portion of the computer software applica-
tion, and method synthesizer 106 is configured to synthesize
a root method, such as within the model portion of the com-
puter software application, where the root method directly or
indirectly calls any, and preferably every, one of the identified
entry points other than via the controller portion of the com-
puter software application.

Any of the elements shown in FIG. 1 are preferably
executed by or otherwise accessible to a computer 110, such
as by implementing any of the elements shown in FIG. 1 in
computer hardware and/or in computer software embodied in
acomputer-readable storage medium in accordance with con-
ventional techniques.

Reference is now made to FIG. 2, which is a simplified
flowchart illustration of an exemplary method of operation of
the system of FIG. 1, operative in accordance with an alter-
native embodiment of the invention. The method of FIG. 2
may be performed to prepare an MVC-based computer soft-
ware application for static analysis by identifying view ele-
ments of the application to which control is passed by the
application controller. In the method of FIG. 2, one or more
control flows are identified within a model portion of a com-
puter software application having an MVC architecture,
where each control flow passes one or more values to a con-
troller portion of the computer software application (step
200). For each identified control flow, a declarative specifi-
cation of the controller portion is analyzed to identify one or
more views to which the controller portion passes control
based on the value(s) passed by the control flow (step 202). A
method is synthesized, such as within the model portion of the
computer software application, where the method directly or
indirectly calls any, and preferably every, one of the identified
views other than via the controller portion of the computer
software application (step 204).

The values passed to the controller portion of the computer
software application may be approximated for the static
analysis using conventional techniques. For example, the val-
ues may be modeled using an abstract representation, such as

US 9,189,204 B2

5

the set of all characters appearing in literal strings represent-
ing the values, where the set of concrete values arising during
any possible execution of the application may be mapped to
the abstract values used to represent the values.

Reference is now made to FIGS. 3A and 3B which, taken
together, is a simplified example of model and controller
portions of a computer software application useful in under-
standing the method of FIG. 2. In FIGS. 3A and 3B a model
portion 300 and a controller specification 302 are shown of an
application built using the Struts open-source MVC frame-
work. In the example shown, there are two possible control-
flow paths extending the call to perform(), and the result of
the branching decision is made based on the concrete value of
the ‘forwardID’ variable, which is resolved into either of the
values “failure” or “success”. The mappings

“success”<->“joinMVC jsp”

“failure”<->“JoinSuccessful .jsp”
resolve to

forwardID<->“success” at (*)

forwardID<->*“failure” at (**)
which represent the control-flow paths

(*)->the entry point into “joinMVC.jsp”

(**)->the entry point into “JoinSuccessful.jsp”.

A synthesized method 304 is shown, such as for inclusion
within the model portion of the computer software applica-
tion during static analysis, where the method directly calls the
identified views. The syntax of ‘request.redirect To’ is a
pseudocode simplification of actual syntax used in Java. (Java
and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.)

Reference is now made to FIG. 4, which is a simplified
flowchart illustration of an exemplary method of operation of
the system of F1G. 1, operative in accordance with an embodi-
ment of the invention. The method of FIG. 4 may be per-
formed to prepare an MVC-based computer software appli-
cation for static analysis by identifying entry points into the
model portion of the application. In the method of FIG. 4, a
declarative specification of a controller portion of a computer
software application having an MVC architecture is analyzed
to identify one or more control flows from the controller
portion to a model portion of the computer software applica-
tion (step 400). For each control flow identified, an entry point
corresponding to the control flow is identified within the
model portion of the computer software application (step
402). A root method is synthesized, such as within the model
portion of the computer software application, where the root
method directly or indirectly calls any, and preferably every,
one of the identified entry points other than via the controller
portion of the computer software application (step 404).

Reference is now made to FIGS. 5A and 5B, which, taken
together, is a simplified example of model and controller
portions of a computer software application useful in under-
standing the method of FIG. 4. In FIGS. 5A and 5B a model
portion 500 and a controller specification 502 are shown of an
application built using the Struts open-source MVC frame-
work. In the example shown, model portion 500 is an action
class that acts as the controller in that it responds to a user
action, such as clicking an HTML hyperlink, and sends a
specific URL to the servlet container. One or more of the
action class’ methods are executed, and a string result is
returned. Based on the value of the result, a specific view
page, such as HelloWorldjsp, is rendered. A synthesized
method 504 is shown for inclusion within the model portion
of the computer software application during static analysis.

Referring now to FIG. 6, block diagram 600 illustrates an
exemplary hardware implementation of a computing system
in accordance with which one or more components/method-

10

15

20

25

30

35

40

45

50

55

60

65

6

ologies of the invention (e.g., components/methodologies
described in the context of FIGS. 1, 2, and 4) may be imple-
mented, according to an embodiment of the invention.

As shown, the techniques for controlling access to at least
one resource may be implemented in accordance with a pro-
cessor 610, a memory 612, I/O devices 614, and a network
interface 616, coupled via a computer bus 618 or alternate
connection arrangement.

It is to be appreciated that the term “processor” as used
herein is intended to include any processing device, such as,
for example, one that includes a CPU (central processing
unit) and/or other processing circuitry. It is also to be under-
stood that the term “processor” may refer to more than one
processing device and that various elements associated with a
processing device may be shared by other processing devices.

The term “memory” as used herein is intended to include
memory associated with a processor or CPU, such as, for
example, RAM, ROM, a fixed memory device (e.g., hard
drive), a removable memory device (e.g., diskette), flash
memory, etc. Such memory may be considered a computer
readable storage medium.

In addition, the phrase “input/output devices” or “I/O
devices” as used herein is intended to include, for example,
one or more input devices (e.g., keyboard, mouse, scanner,
etc.) for entering data to the processing unit, and/or one or
more output devices (e.g., speaker, display, printer, etc.) for
presenting results associated with the processing unit.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the invention.
In this regard, each block in the flowchart or block diagrams
may represent a module, segment, or portion of code, which
comprises one or more executable instructions for imple-
menting the specified logical function(s). It should also be
noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the
figures. For example, two blocks shown in succession may, in
fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of'the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer instructions.

It will be appreciated that any of the elements described
hereinabove may be implemented as a computer program
product embodied in a computer-readable medium, such as in
the form of computer program instructions stored on mag-
netic or optical storage media or embedded within computer
hardware, and may be executed by or otherwise accessible to
a computer (not shown).

While the methods and apparatus herein may or may not
have been described with reference to specific computer hard-
ware or software, it is appreciated that the methods and appa-
ratus described herein may be readily implemented in com-
puter hardware or software using conventional techniques.

While the invention has been described with reference to
one or more specific embodiments, the description is intended
to be illustrative of the invention as a whole and is not to be
construed as limiting the invention to the embodiments
shown. It is appreciated that various modifications may occur
to those skilled in the art that, while not specifically shown
herein, are nevertheless within the true spirit and scope of the
invention.

US 9,189,204 B2

7

What is claimed is:

1. A method for preparing a computer software application
for static analysis, implemented by a computing processor,
the method comprising:

identifying, by the processor, a control flow within a com-

puter software application, wherein the control flow
passes a value to a controller portion of the computer
software application;

analyzing, by the processor, a declarative specification of

the controller portion of the computer software applica-
tion to identify, based on the value, where in the com-
puter software application the controller portion passes
control, wherein the declarative specification comprises
controller logic, and wherein the declarative specifica-
tion is analyzed to provide improved precision to the
static analysis; and

synthesizing, by the processor, a method within the com-

puter software application, based on the value.

2. The method of claim 1 wherein identifying the control
flow within the computer software application comprises:

identifying a plurality of control flows wherein each con-

trol flow passes at least one value to the controller por-
tion of the computer software application;

for each control flow identified, analyzing the declarative

specification of the controller portion to identify at least
one view to which the controller portion passes control,
based on the atleast one value passed by the control flow.
3. The method of claim 2 wherein synthesizing the method
comprises synthesizing the method where the method indi-
rectly calls the at least one view.
4. The method of claim 1 wherein synthesizing the method
comprises synthesizing the method within the controller por-
tion of the computer software application.
5. The method of claim 3 wherein synthesizing the method
comprises synthesizing the method where the method indi-
rectly calls the at least one view other than via the controller
portion of the computer software application.
6. The method of claim 1, the method further comprising:
analyzing the declarative specification of the controller
portion of the computer software application to identity
the control flow from the controller portion to a model
portion of the computer software application;

identifying an entry point within the model portion of the
computer software application corresponding to the
control flow; and

synthesizing a root method within the computer software

application, where the method calls the entry point.

7. The method of claim 6 wherein synthesizing the method
comprises synthesizing the method within the model portion
of the computer software application.

8. The method of claim 6 wherein synthesizing the method
comprises synthesizing the method where the method indi-
rectly calls the entry point.

9. The method of claim 8 wherein synthesizing the method
comprises synthesizing the method where the method indi-
rectly calls the entry point other than via the controller portion
of the computer software application.

10. A system for preparing a computer software application
for static analysis, the system comprising:

a processor; and

a computer readable storage medium operationally

coupled to the processor, the computer readable storage
medium having computer readable program code
embodied therewith to be executed by the processor, the
computer readable program code configured to:

10

15

20

25

30

40

45

50

60

65

8

identify, by the processor, a control flow within a com-
puter software application, wherein the control flow
passes a value to a controller portion of the computer
software application;
analyze, by the processor, a declarative specification
of the controller portion of the computer software
application to identify, based on the value, where in
the computer software application the controller
portion passes control, wherein the declarative
specification comprises controller logic, and
wherein the declarative specification is analyzed to
provide improved precision to the static analysis;
and
synthesize, by the processor, a method within the
computer software application, based on the value.

11. The system of claim 10 wherein the computer readable
program code configured to identify, by the processor, the
control flow within the computer software application is fur-
ther configured to:

identify a plurality of control flows wherein each control
flow passes at least one value to the controller portion of
the computer software application;

for each control flow identified, analyze the declarative
specification of the controller portion to identify at least
one view to which the controller portion passes control,
based on the atleast one value passed by the control flow.

12. The system of claim 11 wherein the computer readable
program code configured to synthesize the method is further
configured to synthesize the method where the method indi-
rectly calls the at least one view.

13. The system of claim 12 wherein synthesizing the
method comprises synthesizing the method where the method
indirectly calls the at least one view other than via the con-
troller portion of the computer software application.

14. The system of claim 10 wherein the computer readable
program code is further configured to:

analyze the declarative specification of the controller por-
tion of the computer software application to identify the
control flow from the controller portion to a model por-
tion of the computer software application;

identify an entry point within the model portion of the
computer software application corresponding to the
control flow; and

synthesize a root method within the computer software
application, where the method calls the entry point.

15. The system of claim 14 wherein the computer readable
program code configured to synthesize the method is further
configured to synthesize the method within the model portion
of the computer software application.

16. A computer program product for preparing a computer
software application for static analysis, the computer pro-
gram product comprising:

a computer readable storage medium having computer
readable program code embodied therewith, the com-
puter readable program code executable by a processor
to:

identify, by the processor, a control flow within a computer
software application, wherein the control flow passes a
value to a controller portion of the computer software
application;

analyze, by the processor, a declarative specification of the
controller portion of the computer software application
to identify, based on the value, where in the computer
software application the controller portion passes con-
trol, wherein the declarative specification comprises

US 9,189,204 B2

9

controller logic, and wherein the declarative specifica-
tion is analyzed to provide improved precision to the
static analysis; and

synthesize, by the processor, a method within the computer

software application, based on the value.

17. The computer program product of claim 16 wherein the
computer readable program code configured to identify the
control flow within the computer software application is fur-
ther configured to:

identify a plurality of control flows wherein each control

flow passes at least one value to the controller portion of
the computer software application;

for each control flow identified, analyze the declarative

specification of the controller portion to identify at least
one view to which the controller portion passes control,
based on the atleast one value passed by the control flow.

18. The computer program product of claim 17 wherein the
computer readable program code configured to synthesize the

10

10

method is further configured to synthesize the method where
the method indirectly calls the at least one view.

19. The computer program product of claim 16 wherein the
computer readable program code configured to synthesize the
method is further configured to synthesize the method where
the method indirectly calls the at least one view other than via
the controller portion of the computer software application.

20. The computer program product of claim 16 wherein the
computer readable program code is further configured to:

analyze the declarative specification of the controller por-

tion of the computer software application to identify the
control flow from the controller portion to a model por-
tion of the computer software application;

identify an entry point within the model portion of the

computer software application corresponding to the
control flow; and

synthesize a root method within the computer software

application, where the method calls the entry point.

#* #* #* #* #*

